

REFERENCES

- [1] D. R. Taft et al., "Ferrite digital phase shifters," presented at the 1965 IEEE G-MTT Internat'l Symp., Clearwater, Fla.
- [2] L. R. Whicker and R. R. Jones, "A digital latching ferrite strip transmission line phase shifter," *IRE Trans. on Microwave Theory and Techniques*, vol. MTT-13, pp. 781-784, November 1965.
- [3] G. L. Heiter, "A latching type ferrite coaxial S-band phase shifter," *Proc. 1965 INTERMAG Conf.*, pp. 3.3-6.
- [4] K. J. Button, "Theory of non-reciprocal ferrite phase shifters in dielectric-loaded coaxial line," *J. Appl. Phys.*, vol. 29, p. 998, 1958.
- [5] P. H. Vartanian, Jr., et al., "Propagation in dielectric slab loaded rectangular waveguide," *IEEE Trans. on Microwave Theory and Techniques*, vol. MTT-6, pp. 215-222, April 1958.
- [6] J. L. Allen, "The analysis of dielectrically loaded ferrite phase shifters including the effect of losses," Ph.D. dissertation, Georgia Inst. Tech., Atlanta, May 1966.
- [7] W. J. Ince and E. Stern, "Computer analysis of ferrite digital phase shifters," *IEEE Internat'l Conv. Rec.*, pt. 5, 1966.
- [8] D. R. Taft, private communication.
- [9] D. R. Taft et al., "High power performance of ferrite digital phase shifters," presented at the 1966 NEREM Conf., Boston, Mass.

Correspondence

Microwaves at Japanese Universities

INTRODUCTION

The present status of the research in the fields of microwaves, millimeter waves, and coherent optical waves at Japanese universities is reviewed. A representative bibliography of over 90 references, which have appeared during the period of the last two years, including the papers to be published shortly, appears at the end of this summary. Among these, some selected topics are described herein briefly. Excluded are most of the works in microwave antennas and propagations, microwave tubes, and the physics of quantum electronics.

Like the recent trends in the United States and Europe, the current interest of the microwave researchers at Japanese universities is changing from the conventional microwave or millimeter wave transmission lines and components to the newly developed subjects such as leaky waveguides and beam waveguides, plasma electronics, quantum electronics, coherent electromagnetic optics, and related areas. This would be seen from the references listed which are divided into eleven subject categories.

I. ELECTROMAGNETIC WAVE THEORY
[1]-[10]

The leaky wave modes, and the surface waves in magnetoionic medium are studied mathematically. In connection with the future space communications technology, some basic problems, for instance, the electromagnetic radiation which would be produced by the oscillating electric dipole moving in free space with constant relativistic velocity, are analyzed [10]. It is shown that the energy density radiated from the moving dipole increases with velocity in the direction of motion and, conversely, it decreases in the opposite direction.

II. WAVEGUIDE THEORY [11]-[17]

The waveguides containing inhomogeneous dielectrics [14], the slab of arbitrary admittance [13], and the waveguide filled

with media composed of dielectrics and metallic blades [17] are treated. The expressions for the equivalent width of the waveguide composed of arbitrary wall impedances are derived [12], which may conveniently be used for the analysis of non-conventional waveguides such as striplines or trough waveguides.

A new family of "parabolic waveguide" whose cross section is formed by a pair of symmetric confocal parabolic conducting walls is proposed, and the interesting and promising features are shown theoretically [16].

III. CIRCULAR TE_{01} WAVEGUIDE [18]-[25]

The reflection and the mode conversion in multimode waveguide are discussed with emphasis on the resonance phenomena which would occur at, or in the immediate vicinity of, the cutoff frequencies of the modes involved [23]-[25].

An interesting novel method to prevent the mode conversion losses at a circular bend of the TE_{01} waveguide using inhomogeneous dielectrics and anisotropic wall impedance is proposed [20]. It is shown that the undesired coupling between the signal TE_{01} mode and both the unwanted TM_{11} and TE_{1n} modes due to the circular bend can be cancelled out all along the bend. This is accomplished by introducing a coupling of equal magnitude and opposite sign to that produced by the bend, by making an appropriate distribution of the permittivity across the cross section of the curved guide and an appropriate circumferential variation of the surface impedance of the guide wall. It is shown also that the appropriate slight deformation of the circular cross section of the curved guide provides just the same effect as that of an anisotropic wall impedance [19].

IV. MICROWAVE FILTERS [26]-[29]

A design theory for the narrow band-pass harmonic resonator filters having extremely high midband frequency is developed, and is successfully confirmed by experiments at x-band [27]. A practical millimeter wave branching filter [29], three-path TEM-line higher harmonic rejection filter [26], and a

utilization of the superconductivity for the low loss microwave filter [28] are studied.

V. PLASMA WAVEGUIDES AND FERRITE-LOADED WAVEGUIDES [30]-[35]

The electromagnetic fields in the ferrite-loaded cavities [30], [31] are analyzed theoretically in detail. The characteristics of the plasma-filled waveguides [33]-[35] and a parametric oscillation and amplification using YIG disk [32] are discussed.

VI. OPEN-TYPE WAVEGUIDES AND LEAKY WAVEGUIDES [36]-[46]

The beam waveguides, leaky waveguides, and surface waveguides, are being studied both from the theoretical interest and the interest of practical applications, especially to the high-speed-train control, train communications, and detection of obstacles on the railway track. The reflecting beam waveguides consisting of curved-strip conducting reflectors [36], and of cylindrical conducting reflectors [37] are analyzed theoretically.

VII. MICROWAVE MEASUREMENTS
[47]-[52]

Synthesis of broadband matched load or absorbing wall is developed [48], [49]. A high sensitivity millimeter wave detection system is proposed [51]. The improved technique for measuring dielectric constants, [52] and the technique for precise measurement of the field distribution of surface waves [47] are also proposed.

VIII. QUASI-OPTICS AND OPTICAL WAVEGUIDES [53]-[60]

The wide-band quasi-optic dielectric prism components such as directional couplers, attenuators, and magic-tees using the Brewster angle matching technique are proposed [53], and are operated successfully at both millimeter [53] and optical [88] wavelengths. Because of the Brewster angle matching, the wave suffers no spurious reflections at the input and output boundary surfaces between air and dielectric, over a very large range of the frequencies affected only by the dispersion of the prism materials. Thus, directivity, broadbandness,

and other performance characteristics are improved remarkably as compared with the conventional prism components reported so far.

A light beam waveguide consists of lens-like media having hyperbolic temperature distribution across the transverse plane is proposed [55], [56]. The hyperbolic temperature distribution provides the pure quadratic variation of the dielectric constant, thereby enabling the mode conversion losses to be minimized.

IX. OPTICAL RESONATORS [61]–[69]

The resonant modes in a Fabry-Perot resonator consisting of nonuniform reflectors, i.e., the reflectors whose reflectivities are the function of position across the reflecting surfaces, are analyzed theoretically, and their application to the laser resonator is discussed [65].

The cylindrical Fabry-Perot resonators are also treated, and a novel construction of a high power, single frequency laser is proposed [64]. A cavity theory for the Fabry-Perot resonators is developed [66]–[68].

X. LASERS—CIRCUIT-THEORETIC TREATMENTS AND DESIGN CONSIDERATIONS [70]–[79]

The use of well-developed circuit theory techniques in designing the optical devices and systems is currently one of the subjects of engineering interest [70]–[77]. Research is being done not only on the development of engineering design techniques for the optical devices, but also it is being done to develop a method of analyzing the quantum actions themselves on the basis of the electric circuit theory point of view [74]. By introducing the appropriate correspondences between the quantities appearing in the conventional energy-level-models and in the equivalent electric-circuit models, the quantum mechanical energy-level-model analysis based on the rate equations can be transformed into the electric-circuit-model analysis based on the circuit equations, which is much more familiar to most of the electrical engineers. The information transmission in quantum circuits is also being studied [76].

XI. COHERENT LIGHT TECHNOLOGY [80]–[92]

Studies on the coherent-light technologies such as light-modulation techniques, optical devices, and systems design, including a laser radar application in atmospheric physics research, etc., are being carried on.

CONCLUSIONS

In summary, the conventional microwave and millimeter-wave research at Japanese universities seem to have had their day, and the day of research and developments of nonconventional guided waves such as leaky waves and beam waves, and closely related topics on microwaves through optical frequencies is here. Intense activity is occurring in analysis, synthesis, and design of laser devices and optical components to cover a wide range of applications.

NOBUAKI KUMAGAI
Faculty of Engineering
Osaka University
Osaka, Japan

CORRESPONDENCE

BIBLIOGRAPHY

I. ELECTROMAGNETIC WAVE THEORY

- [1] T. Hosono, "Complex modes of open waveguide," *J. Inst. Elec. Commun. Engrs. (J.IECE) (Japan)*, vol. 48, p. 558, April 1965.
- [2] K. Yasuura and T. Itakura, "Extension of Rayleigh's method," *Rept. Inst. Elec. Commun. Engrs. (IECE) (Japan)*, Tech. Group on Microwave Transmission, July 1965.
- [3] K. Yasuura, "Approximation theorem for wave functions in partially uniform media," *1966 Joint Nat'l Conv. Rec.*, p. 966, April 1966.
- [4] M. Suzuki, M. Kamimura, and T. Enoto, "Elliptical transmission line representation of electromagnetic waves," *1965 IECE Nat'l Conv. Rec.*, p. 314, November 1965.
- [5] T. Soejima, "Near-field problems of antennas," *J.IECE*, vol. 48, p. 564, April 1965.
- [6] S. Adachi and Y. Mushiaki, "Surface waves along a perfectly conducting plane covered with semi-infinite magneto-plasma," *Radio Sci. J. Res. NBS/USNC-URSI*, vol. 69D, p. 171, February 1965.
- [7] Y. Mushiaki, "Electromagnetic waves along an infinitely long and thin conducting wire in a magneto-ionic medium," *Radio Sci. J. Res. NBS/USNC-URSI*, vol. 69D, p. 503, April 1965.
- [8] K. Udagawa and Y. Miyazaki, "Diffraction of plane wave by perfectly conducting elliptic cylinder—A study by conformal mapping technique," *J.IECE*, vol. 48, pp. 1222, July 1965.
- [9] S. Kohzaki, S. Adachi, and Y. Mushiaki, "A theory and a model experiment of radio propagation in a bilinearly stratified medium," *J.IECE*, vol. 49, p. 709, April 1966.
- [10] H. Fujioka, T. Shiozawa, and N. Kumagai, "Electromagnetic radiation from an electric dipole moving with relativistic velocity," *J.IECE*, vol. 49, p. 1147, June 1966.

II. WAVEGUIDE THEORY

- [11] N. Moriguchi, T. Rokushima, and S. Mori, "Properties of the short slot hybrid junction," *J.IECE*, vol. 47, p. 153, February 1964.
- [12] T. Matsumoto, M. Suzuki, and C. Funatsu, "Equivalent width of waveguide," *J.IECE*, vol. 48, p. 1046, June 1965.
- [13] Y. Mushiaki and T. Ishida, "Characteristics of loaded rectangular waveguides," *IEEE Trans. on Microwave Theory and Techniques*, vol. MTT-13, pp. 451–457, July 1965.
- [14] R. Yamada and K. Watanabe, "Propagation in cylindrical waveguide containing inhomogeneous dielectric," *IEEE Trans. on Microwave Theory and Techniques (Correspondence)*, pp. 716–717, September 1965.
- [15] K. Horiochi and N. Ishida, "Rigorous design of phase equalizer and delay line using tapered cutoff waveguide," *Rept. IECE Tech. Group on Microwave Transmission*, March 1966.
- [16] —, "Parabolic waveguide," *Rept. IECE Tech. Group on Microwave Transmission*, April 1966.
- [17] S. Nishida and T. Nagao, "On transmission characteristics of rectangular waveguides filled with the media composed of dielectrics and metallic blades," *J.IECE*, vol. 49, p. 1173, June 1966.

III. CIRCULAR TE_{01} WAVEGUIDE

- [18] N. Kumagai, S. Kurazono, T. Nakahara, and N. Kurauchi, " TE_{01} mode filters for TE_{01} mode waveguide," *J.IECE*, vol. 47, p. 325, March 1964.
- [19] N. Kumagai and K. Yoshida, "On the circular bend of TE_{01} mode waveguide," *Rept. IECE Tech. Group on Microwave Transmission*, February 1966.
- [20] N. Kumagai and S. Kurazono, " TE_{02} mode filtering by means of inhomogeneous dielectric and anisotropic wall impedance," *Rept. IECE Tech. Group on Microwave Transmission*, to be presented.
- [21] N. Kumagai and K. Yoshida, "Proposal for the prevention of mode conversion losses in the circular bend of TE_{01} waveguide," *IECE Nat'l Conv. Rec.*, p. 389, November 1966.
- [22] K. Udagawa and Y. Miyazaki, "Reflection and mode conversion in titled millimeter circular waveguides—A study by conformal mapping technique," *J.IECE*, vol. 47, p. 1186, August 1964.
- [23] T. Itakura and K. Yasuura, "On resonance in a slightly tilted waveguide," *J.IECE*, vol. 48, p. 1629, October 1965.
- [24] S. Egami and T. Itakura, "Transient phenomena at a tilted multimode waveguide," *1966 Joint Nat'l Conv. Rec.*, p. 1107, April 1966.
- [25] N. Yamauchi, "On the characteristics of bent circular waveguide—especially in the vicinity of the cutoff frequencies of unwanted modes," *1966 Joint Nat'l Conv. Rec.*, p. 1105, April 1966.

IV. MICROWAVE FILTERS

- [26] T. Shiraishi and K. Takiyama, "The higher harmonic rejection three-path transmission line filter," *J.IECE*, vol. 47, p. 1161, August 1964.
- [27] J. Ishii and H. Fujimoto, "Harmonic resonator filters—Design and experiments," *Rept. IECE Tech. Group on Circuit Theory*, CT Monograph No. 92-1, January 1966.
- [28] J. Hamasaki and H. Okamoto, "Low-loss microwave filter exploiting superconductivity," *1966 Joint Nat'l Conv. Rec.*, p. 1080, April 1966.

- [29] M. Okada, S. Iiguchi, A. Inoue, and H. Sagesaka, "Millimeter wave TE_{11} mode branching filter," *1966 Joint Nat'l Conv. Rec.*, p. 1149, April 1966.

V. PLASMA WAVEGUIDES AND FERRITE-LOADED WAVEGUIDES

- [30] S. Kumagai, Y. Nakamichi, and N. Okamoto, "Analysis of electromagnetic fields in the cavity containing a gyro-magnetic material," *J.IECE*, vol. 48, p. 226, February 1965.
- [31] E. Sawado, Y. Kobayashi, and N. Ogasawara, "A derivation of the revised perturbation formulas for circularly polarized cavity containing ferrite rods and spheres," *Proc. IEEE (Correspondence)*, vol. 53, p. 313, March 1965.
- [32] N. Cho and T. Makimoto, "Oscillating and amplifying characteristics of Mavar using YIG disk," *J.IECE*, vol. 47, p. 1835, December 1964.
- [33] M. Ohkubo, "Electromagnetic fields in plasma guides," *J. Inst. Elec. Eng. (Japan)*, vol. 84, p. 395, April 1964.
- [34] —, "Non-reciprocity in plasma loaded waveguide," *J.IECE*, vol. 84, p. 1795, November 1964.
- [35] —, "Electromagnetic fields in anisotropic plasmaguides consider electron collision losses," *J.IECE*, vol. 85, p. 1776, October 1965.

VI. OPEN-TYPE WAVEGUIDES AND LEAKY WAVEGUIDES

- [36] N. Kumagai, K. Yoshida, and T. Nakahara, "Reflecting beam waveguide," *J.IECE*, vol. 49, p. 1099, June 1966.
- [37] —, "Cylindrical reflecting beam waveguide," *J.IECE*, vol. 49, p. 1523, August 1966.
- [38] N. Kumagai and K. Yoshida, "Geometrical-optics treatment of reflecting beam waveguides," *Rept. IECE Tech. Group on Microwave Transmission*, October 1966.
- [39] Y. Nakanishi and T. Yamasaki, "Analysis of reflecting beam waveguides by means of equivalent lens-sequence beam waveguide," *J.IECE (Correspondence)*, vol. 49, p. 264, February 1966.
- [40] M. Suzuki, M. Kamimura, and T. Enoto, "E-line representation and its application to the reflecting beam waveguide," *Rept. IECE Tech. Group on Microwave Transmission*, July 1965.
- [41] S. Tokumaru and S. Nishida, "Analysis of leaky waveguides by perturbation method," *1966 Joint Nat'l Conv. Rec.*, p. 965, April 1966.
- [42] S. Sakayangai, and S. Nishida, "On the propagation characteristics of periodic leaky waveguide," *1966 Joint Nat'l Conv. Rec.*, p. 1110, April 1966.
- [43] Y. Miyazaki and Y. Akao, "Considerations on electromagnetic coupling between two regions by conformal mapping—Applications to the open resonators and open waveguides," *1966 Joint Nat'l Conv. Rec.*, p. 7, April 1966.
- [44] S. Iiguchi, "Some notes on the open type waveguide and the Kirchhoff-Huygens' principle," *J.IECE*, vol. 49, p. 1114, June 1966.
- [45] S. Nishida, "Leaky wave antennas," *J.IECE*, vol. 48, p. 552, April 1965.
- [46] R. Sato, J. Chiba, S. J. Park, S. Iwata, R. Koide, and S. Miyamoto, "Radiation from launching horn and bending points of surface wave transmission line," *J.IECE*, vol. 47, p. 310, March 1964.

VII. MICROWAVE MEASUREMENTS

- [47] H. Hata, K. Suetake, and R. Ishii, "The progress in precise measurement of surface wave field distributions by small probes and rotary reflector," *J.IECE*, vol. 47, p. 1471, October 1964.
- [48] Y. Naito and K. Suetake, "Synthesis of multi-layer absorbing wall for microwaves," *J.IECE*, vol. 48, p. 2152, December 1965.
- [49] K. Takiyama and M. Nishimura, "Broad band matched load using resistive layers," *Rept. IECE Tech. Group on Microwave Transmission*, December 1965.
- [50] A. Tetsuya, T. Wada, and A. Maruyama, "Tunnel-diode detectors at microwave frequencies," *J.IECE*, vol. 48, p. 395, March 1965.
- [51] S. Okamura, S. Kawakami, and K. Harada, "High sensitivity millimeter wave detection system using frequency multiplication," *Rept. IECE Tech. Group on Microwave Transmission*, July 1965.
- [52] O. Fukumitsu, "A location invariant method for measuring dielectric constants in microwave frequencies," *J.IECE*, vol. 49, p. 425, March 1966.

VIII. QUASI-OPTICS AND OPTICAL WAVEGUIDES

- [53] T. Suetake, N. Kumagai, and S. Kurazono, "Wideband quasi-optic prism components," *J.IECE*, vol. 49, p. 457, March 1966.
- [54] Y. Suematsu and H. Fukinuki, "Analysis of the idealized light waveguide using gas lens," *J.IECE*, vol. 48, p. 1684, October 1965.
- [55] Y. Suematsu, "Light beam waveguide using lens like media with periodical hyperbolic temperature distribution," *J.IECE*, vol. 49, p. 463, March 1966.
- [56] Y. Suematsu, K. Iga, and S. Ito, "A light beam waveguide using hyperbolic-type gas lens," presented at the 1966 MTT Internat'l Symp., May 1966.
- [57] Y. Suematsu, K. Iga, and H. Fukinuki, "Con-

vergency of flow-type gas lens," *JIECE*, vol. 49, p. 748, April 1966.

[58] Y. Aoki and M. Suzuki, "Focal length of the gas lens," *1966 Joint Nat'l Conv. Rec.*, p. 1038, April 1966.

[59] S. Kawakami and J. Nishizawa, "Propagation loss in a distributed beam waveguide," *Proc. IEEE (Correspondence)*, vol. 53, pp. 2148-2149, December 1965.

[60] R. Hioki and T. Suzuki, "Coherent light transmitted through optical fiber," *Japan. J. Appl. Phys. (Short Notes)*, vol. 4, p. 817, October 1965.

IX. OPTICAL RESONATORS

[61] N. Kumagai, M. Matsuhara, and H. Mori, "Design consideration for mode selective Fabry-Perot laser resonator," *IEEE Trans. on Quantum Electronics*, vol. QE-1, pp. 85-94, May 1965.

[62] —, "Multi-reflector Fabry-Perot laser resonators," *JIECE*, vol. 47, p. 1003, July 1964.

[63] N. Kumagai and M. Matsuhara, "Mode discrimination of laser resonator exploiting the transmission characteristics of Fabry-Perot interferometer," *JIECE*, vol. 49, p. 244, February 1966.

[64] N. Kumagai, H. Mori, and K. Yoshida, "Cylindrical Fabry-Perot resonators," *JIECE*, vol. 49, p. 1160, June 1966.

[65] N. Kumagai, H. Mori, and T. Shiozawa, "Resonant modes in a Fabry-Perot resonator consisting of non-uniform reflectors," *JIECE*, vol. 49, p. 1249, July 1966.

[66] H. Ogura and Y. Yoshida, "Cavity theory of Fabry-Perot resonator," *Japan. J. Appl. Phys.*, vol. 3, p. 546, September 1964.

[67] H. Ogura, Y. Yoshida, and J. Ikenoue, "Theory of deformed Fabry-Perot resonator," *J. Phys. Soc. (Japan)*, vol. 20, p. 598, April 1965.

[68] H. Ogura, Y. Yoshida, Y. Furuhama, and J. Ikenoue, "Slight deformation of confocal Fabry-Perot resonator," *Japan. J. Appl. Phys.*, vol. 5, p. 225, March 1966.

[69] R. Hioki and T. Suzuki, "On the diffraction loss of optical resonator," *Japan. J. Appl. Phys.*, vol. 5, p. 160, February 1966.

X. LASERS—CIRCUIT-THEORETIC TREATMENTS AND DESIGN CONSIDERATIONS

[70] N. Kumagai and M. Matsuda, "Circuit theory consideration on maximization of laser output," *JIECE*, vol. 48, p. 1216, July 1965.

[71] N. Kumagai and H. Yamamoto, "Transient analysis approach to optical maser amplifier," *JIECE*, vol. 48, p. 1039, June 1965.

[72] —, "Generalized solutions for optical maser amplifiers," *IEEE Trans. on Microwave Theory and Techniques*, vol. MTT-13, pp. 445-451, July 1965.

[73] N. Kumagai and T. Uegaki, "Theory of segmented lasers," *JIECE*, vol. 49, p. 717, April 1966.

[74] N. Kumagai and M. Matsuda, "A circuit-theoretic treatment of laser actions," *JIECE*, vol. 49, p. 1257, July 1966.

[75] N. Kumagai and M. Matsuhara, "A circuit theory for laser device design," *J. Japan Soc. Appl. Phys.*, vol. 35, p. 489, July 1966.

[76] H. Noguchi and J. Hamasaki, "Information transmission in quantum circuits," *1965 IECE Nat'l Conv. Rec.*, p. 410, November 1965.

[77] Y. Fujii and S. Shirashi, "Circuital characteristics of laser oscillator," Rept. IECE Tech. Group on Quantum Electronics, December 1965.

[78] K. Kamiryo, T. Kano, H. Matsuzawa, and M. Yoshida, "Optimum designs of elliptical cavities compared with cylindrical ones," *Proc. IEEE (Correspondence)*, vol. 53, pp. 1750-1751, November 1965.

[79] Y. Ohtsuka, "A method for evaluating the cavity loss and an optimum reflectivity of the output mirror in a ruby laser with an external mirror," *Japan. J. Appl. Phys.*, vol. 5, p. 74, January 1966.

XI. COHERENT LIGHT TECHNOLOGY

[80] T. Matsumoto, M. Suzuki, and Y. Kinoshita, "Parametric frequency conversion in coherent light traveling-wave phase modulation," *JIECE*, vol. 47, p. 221, February 1964.

[81] —, "Traveling-wave phase modulation of coherent light," *JIECE*, vol. 48, p. 1511, September 1965.

[82] S. Saito and T. Kimura, "Demodulation of PM-modulated laser beam by autocorrelation," *JIECE*, vol. 48, p. 418, March 1965.

[83] N. Kumagai and T. Shiozawa, "Low-loss optical phase modulator," *JIECE (Correspondence)*, vol. 48, p. 2164, December 1965.

[84] J. Hamasaki and H. Noguchi, "Variable phase shifter for laser light using birefringent crystals," *Proc. IEEE (Correspondence)*, vol. 53, pp. 80-81, January 1965.

[85] Y. Fujii, K. Yokoyama, and M. Ohno, "Optical Faraday effect and optical circulator," *1966 Joint Nat'l Conv. Rec.*, p. 1001, April 1966.

[86] Y. Fujii and H. Ogawa, "The R_{90} of traveling-wave phototube at a large signal," *JIECE*, vol. 49, p. 906, May 1966.

[87] T. Kimura, "Balanced-type optical PM-AM con-

verter," *1966 Joint Nat'l Conv. Rec.*, p. 995, April 1966.

[88] Y. Matsuo, Y. Cho, and T. Kobayashi, "Experiments of optical directional couplers," *1966 Joint Nat'l Conv. Rec.*, p. 1006, April 1966.

[89] Y. Kinoshita, M. Suzuki, and T. Matsumoto, "Light beam propagation in a turbulent medium," *1966 Joint Nat'l Conv. Rec.*, p. 1043, April 1966.

[90] H. Inaba, T. Kobayashi, T. Ichimura, and M. Morihisa, "Laser radar application in atmospheric physics research," *1966 Internat'l Quantum Electronics Conf.*, April 1966.

[91] S. Tsutsumi, "Spatial filter used in scanning optical detection system," *JIECE*, vol. 49, p. 1083, June 1966.

[92] S. Saito, Y. Fujii, K. Yokoyama, and J. Hamasaki, "The laser current transformer for EHV power transmission lines," *1966 Internat'l Quantum Electronics Conf.*, April 1966.

Optimal Design of Matching Networks for Microwave Transistor Amplifiers

Abstract—The design of input and output matching networks for transistor microwave frequency amplifiers has been optimized by the use of an efficient computer program. Power amplifiers capable of 2.5 watt peak power output with a 400 MHz bandwidth at 2.25 GHz have been fabricated. The matching network problem was reduced to an equivalent nonlinear pro-

plicated by nonlinear operation to give efficiency as well as gain. The natural step to integrated microwave transistor amplifiers imposes a minimal size constraint upon the matching network design. Additional constraints such as transistor biasing networks and coupling capacitor dimensions must also be considered. The characterization techniques used to obtain the transistor input and output admittances have been previously described [1]. The admittances generally cannot be ascribed to a simple equivalent circuit. The technique described in this paper allows networks, consisting of lossless transmission lines, to be designed to match the measured admittances over a broad range of frequencies. An extension of the technique to lumped parameter elements also has been made.

We have characterized either port of a transistor as an admittance for the purposes of this discussion. This admittance is generally a function of both power level and frequency as shown in Fig. 2. Upon choosing an operating level, the admittance is given in terms of frequency alone. By least squares curve fitting, an admittance vs. frequency function may be empirically described. In general, two such admittance functions are given to be matched to one another by the use of a suitable network. The case described below utilizes lossless transmission line elements and capacitors to construct an admittance matching network over a broad band of frequencies.

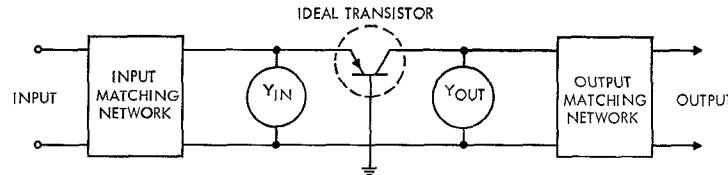


Fig. 1. Schematic diagram of a single stage transistor microwave amplifier. The output may be the input admittance of the next transistor stage.

gramming problem by considering the N -filter elements as coordinates in a $2N$ -dimensional vector space. The optimal solution point in the vector space was found by the use of a "pattern search" routine which utilized randomly chosen orthogonal transformations of the search pattern to minimize an objective function. In this case, a suitable objective function was chosen to be the area under the curve of "reflection coefficient" vs. frequency for the filter input. By use of multiple data input as many as six designs have been achieved in less than nine minutes on the 7044 computer.

INTRODUCTION

Construction of transistor amplifiers at microwave frequencies involves the design of suitable matching networks as shown in Fig. 1. Power amplifiers are further com-

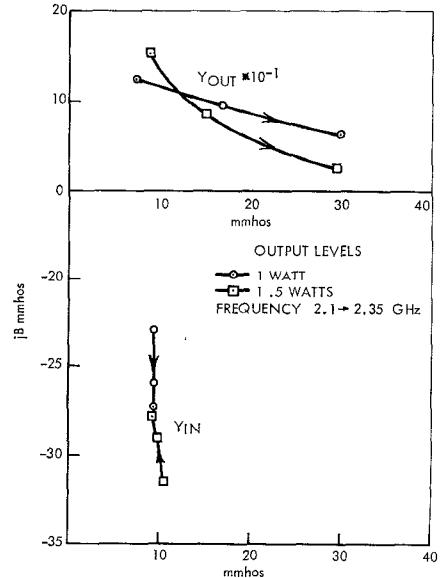


Fig. 2. Typical transistor admittance functions.

Manuscript received May 31, 1966. This work was sponsored by the AF Avionics Laboratory, Research and Technology Division, USAF Systems Command, under Contract AF 33 (615)-2525.